SOLAR-BASED TECHNIQUES FOR WATER PURIFICATION IN AFRICA – NEW TECHNOLOGIES FOR FOOD SECURITY

BRIGHT N. JAATO

PHD COMMONWEALTH SCHOLAR (SPLIT-SITE), MATERIALS SCIENCE.

GFS Food for Thought Coffee Break

CONTENT

- INTRODUCTION
- SOURCES OF DRINKING WATER
- CONVENTIONAL WATER PURIFICATION
 TECHNIQUES
- RECOMMENDED HOUSEHOLD WATER TREATMENT METHODS
- USE OF PHOTOCATALYSTS
- TANZANIA PROJECT
- CONCLUSION

Introduction: Key Facts

- Food security occurs when all people can access enough safe and nutritious food to meet their requirements for a healthy life, in ways the planet can sustain into the future.
- Water is key to food security.
- The quality of drinking water affects the effective absorption of nutrients by the human body.
- At the household level, contaminated drinking water can compromise food security

Water for food security: lessons learned from a review of water-related interventions (2017)

Introduction: Key Facts

- According to WHO, about 10% of the total burden of disease worldwide could be prevented by improvements in drinking water, sanitation, hygiene and water resource management.
- This makes the global importance of safe drinking water key for development, poverty reduction and good health.
- 663 million people rely on unimproved sources, including 159 million dependent on surface water.
- At least 1.8 billion people use a drinking-water source contaminated with faeces.

UN-WATER. 1.3 - Progress on wastewater treatment. (2018). DOI:10.1128/MCB.24.8.3430; United Nations. The Human Right to Water and Sanitation Milestones. Action 1–4 (2015)

Introduction: Key Facts

- Contaminated water can transmit diseases such diarrhea, cholera, dysentery, typhoid and polio.
- Waterborne disease has been ranked as the leading cause of death globally, with Africa being the greatest contributors to the death toll.
- Contaminated drinking-water is estimated to cause; 502, 000 diarrheal deaths each year; childhood underweight which causes 70,000 deaths yearly.
- Every day, 6,000 children die of water-related diseases

UN-WATER. 1.3 - Progress on wastewater treatment. (2018). DOI:10.1128/MCB.24.8.3430; United Nations. The Human Right to Water and Sanitation Milestones. Action 1–4 (2015)

Sources of Drinking Water

Conventional Water Purification Techniques

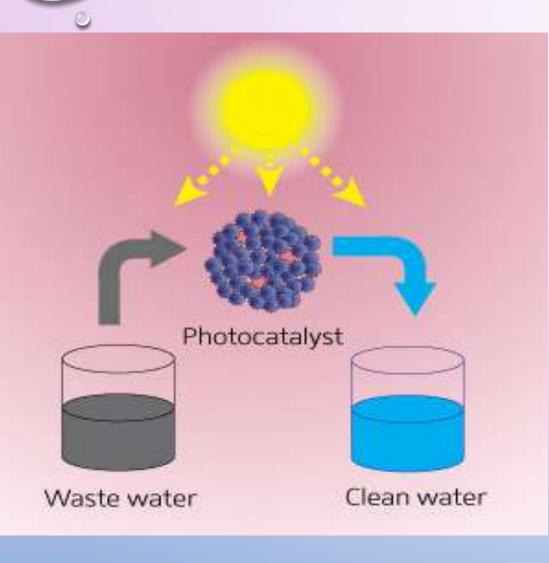
 To address these issues, conventional techniques such as chemical precipitation, solvent extraction, membrane filtration, ion exchange, electrochemical removal, coagulation techniques have been adopted.

• The challenges associated with these methods are incomplete removal of impurities, high energy efficiency requirements, availability of toxic sludge, low efficiency, sensitive operating methods and high maintenance cost.

• Alternative techniques that are low cost, scalable, benign, simple and effective)

Shan, Y. et al. Wastewater Report 2018. Atmos. Chem. Phys. Discuss. 1–26 (2016)DOI:10.5194/acp-2016-176; Crini, G. et al. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment To cite this version : HAL Id : Hal-02065600 Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environmental Chemistry for a Sustainable World. vol. 18 (2019).; Shaheen, S. M. et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int. Mater. Rev. 64, 216–247 (2019).

Recommended Household Water Treatment Methods


- Solar water disinfection (SODIS): Utilizes the combined effects of ultra-violet radiation and heat from the sun to kill most pathogens in water. Disinfection is achieved within 6 hours to 2 days, depending on sunlight intensity and water turbidity.
- Solar pasteurization: This method effectively eliminates pathogens regardless of the water turbidity. This practice incorporates solar reflectors or insulators to reach temperatures of 60°C or more. Three hours is required for complete pasteurization.
- Bio-sand filters, Chlorination and Low-cost ceramic filters

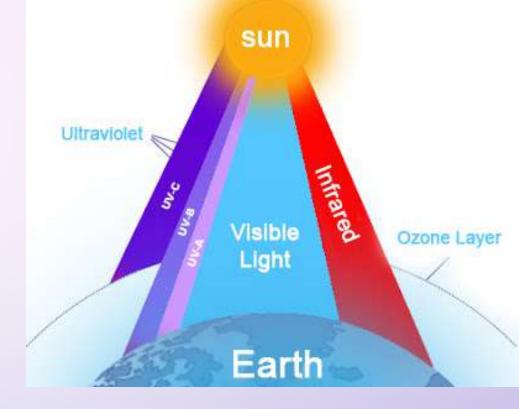
UNICEF. Going to Scale with Household Water Treatment and Safe Storage (HWTS) 27 (2009).

SODIS METHOD

Aim: Use of photocatalysts

Photocatalysts decompose harmful substances using solar energy.

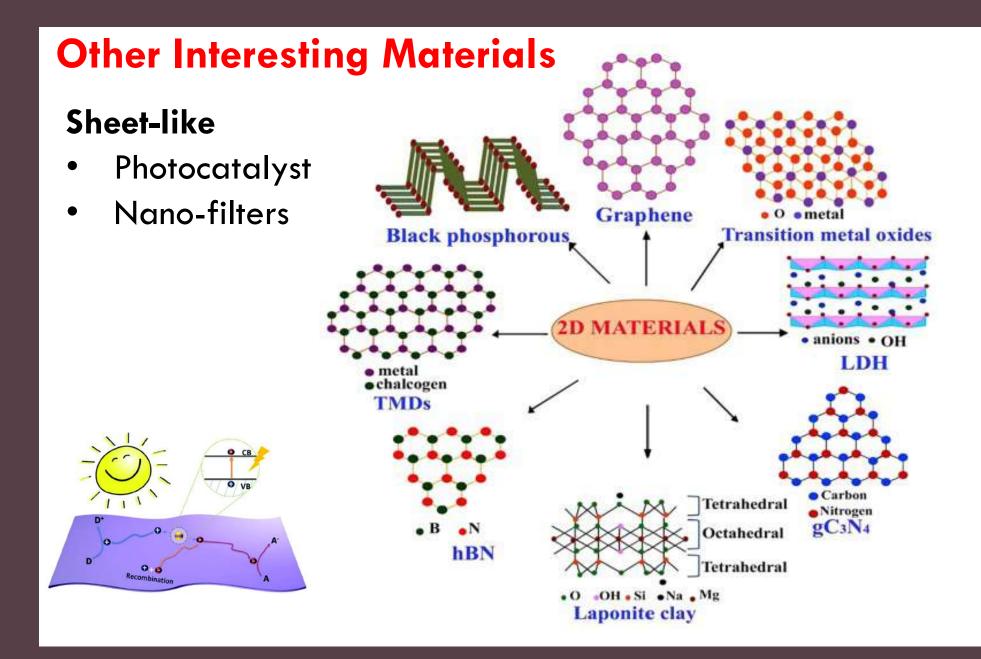
Speed up photo-reaction, thus reducing disinfection time.


Decompose a large variety of chemical contaminants and causing fatal damage to Pathogens.

Low cost, environmentally friendly, easy to prepare.

Lab Work

- Active in the UV region
 - Enhance optical properties (introducing other elements)
 - Simple kitchen equipment like microwave and oven
 - Over 90% removal of chemical pollutants achieved (<1 hr)
 - Potent at killing pathogens (Pathology Dept.)


Tanzania Project – Field Work majcom

- Vingunguti is a shanty town with approximately 100,000 residents.
- Government is not able to send social and economic infrastructure.
- The construction of traditional sewerage systems is hampered by high construction cost, a high-water table and high fees associated with adequate waste disposal.
- This has resulted in sewage overflows which pollute the water bodies used by the inhabitants.
- Leading to frequent outbreaks of water-borne diseases.

Examples of Nanoparticles

Nanoparticle/nanomaterial	Pollutant	Reference
Nanocrystalline TiO ₂	Metal ions	Pena et al. (2005)
Nitrogen (N)-doped TiO ₂	Azo dyes	Liu et al. (2005b)
Fe(III)-doped TiO ₂	Phenol	Nahar et al. (2006)
Supported TiO ₂ nanoparticles	Aromatic pollutants	Lópes-Munoz et al. (2005)
Silver-doped titanium dioxide nanoparticles	Bacteria	Liga et al. (2011)
Manganese-doped ZnO NPs	Methylene blue	Ullah and Dutta (2008)
Nanotubes Bi ₂ O ₃	Chromium ions	Qin et al. (2012)
Bi2O3 and Au/Bi2O3 nanorods	Orange II dye	Anandan et al. (2010)
CeO ₂	Dyes	Zhai et al. (2007); Ji et al. (2009); Borker and Salker (2007)
Nanocomposite plasmonic photocatalyst Ag-AgCl/CeO2	Methyl orange	Wang et al (2011)
Nano WO ₃	Escherichia coli	Gondal et al (2009)
Photocatalyst CdS coated with CdS nanoparticles	Dyes and phenolic compounds	Yang et al. (2009)
ZnS nanoporous nanoparticles	Eosin	He and Zhao (2005)

- Consumption of contaminated drinking water can compromise food security
- Using photocatalysts, it's possible to harness the abundant and sustainable energy of the sun for water purification.

- Africa has a large **solar** potential due to its geographical location.
- Prvenent or reduce the outbreak of water-borne diseases.

THANK YOU VERY MUCH FOR YOUR ATTENTION

