Can we switch from chemical to biological nitrogen fixation for sustainable food security?

From lateral root to functional nodule: engineering organogenesis in barley

Min-Yao Jhu

2023 Cambridge Global Food Security Symposium

Oldroyd Group
The Vision of ENSA
Engineering Nitrogen Symbiosis for Africa

To Sustainably Increase Yields for Small-holder Farmers

• Through a detailed understanding of how plants associate with beneficial microorganisms, we aim to broaden their use in agriculture to facilitate sustainable productivity.

• Crop plant productivity is highly dependent on the availability of a nitrogen source and farmers generally provide this as fertilizers.
Biological nitrogen fixation

Nitrogen-fixing bacteria

Nitrogenase: convert di-nitrogen to ammonia, a reactive form of nitrogen then can be used in biological processes.

Legumes form specialized organs on the roots, called nodules, that house the nitrogen-fixing bacteria and provide the suitable oxygen-regulated environment for nitrogen fixation to occur.

\[
\text{N}_2 + 8\text{H}^+ + 8\text{e}^- + 16\text{ATP} + 16\text{H}_2\text{O} \xrightarrow{\text{NifHDK}} 2\text{NH}_3 + \text{H}_2 + 16\text{ADP} + 16\text{P}_i
\]
Engineering a Solution

- **ENSA**: we are attempting to transfer **the capability of associating with nitrogen-fixing bacteria** from legumes to cereals.
- **Self-fertilizing cereals**: can support their own productivity without the need to use nitrogenous fertilizers.
The Four Components to Engineering Symbiosis

1. Pre-infection: Engineer Perception of Nitrogen Fixing Bacteria

2. Nodule initiation: Engineer Bacterial Infection Process

3. Nodule primordia: Engineer Nodule Organogenesis

4. Mature nodule: Engineer the Appropriate Environment for Nitrogen-Fixation within the Nodule

Lin et al., 2020
Mechanisms of nodule organogenesis

Jhu & Oldroyd, 2023, PLOS Biology
Mechanisms of nodule organogenesis

Shared genes drive lateral root development and root nodule organogenesis

Soyano et al., 2019, Science; Schiessl et al., 2019, Current Biology

Jhu & Oldroyd, 2023, PLOS Biology
Mechanisms of nodule organogenesis

Hiltenbrand et al., 2016

Rice Medicago

Auxin-Induced Nodule-Like Structures

Mandana Miri
Mechanisms of nodule organogenesis

Schiessl et al., 2023, bioRxiv

Light sensitive short hypocotyl (LSH)

LSH1 and LSH2 are required for the development of nitrogen fixing nodules.

Jhu & Oldroyd, 2023, PLOS Biology
From Discovery to Engineering

Discovery
• New concepts or information

Design
• Select target genes and design constructs

Engineering Design Process

Test
• Evaluate the phenotypes

Create
• Rapid transformation for prototyping
From Discovery to Engineering

Discovery
- New concepts or information

Design
- Select target genes and design constructs

Engineering Design Process

Create
- Rapid transformation for prototyping

Product development
- Stable transgenic plants

Test
- Evaluate the phenotypes
STARTS – A stable root transformation system for rapid functional analyses in barley

Imani et al., 2011

Create

• Rapid transformation for prototyping

Rooting Media
Coconut water
2mg/l IBA

Many thanks to Thiago and the Platform
Eleni, Patricia, Lakshmi, Esther, Emma, Peter
Acknowledgement

Oldroyd Group
• Giles Oldroyd
• Amy Jacobsen
• Chai Hao Chiu
• Colleen Drapek
• Darius Zarrabian
• Doris Ablinsky
• Edwin Jarratt Barnham
• Evan Ellison
• Jian Feng
• Jongho Sun
• Katharina Schiessl
• Mandana Miri
• Medhavi Kakkar
• Oscar Joubert
• Tak Lee
• Thiago Alexandre Moraes
• Tom Thirkell
• Xinran Li

Ott Group
• Thomas Ott
• Franck Ditengou

NIAB
• Anindya Kundu
• Jordan Price

Reid Group
• Dugald Reid

Paszkowski Group
• Tania Chancellor
• Gabriel Ferreras Garrucho
• Jen McGaley
• Sarabeth Buckley

Choi Group
• Jeongmin Choi

Sebastian Group
• Victor Moura
• Olaf Kranse

Platform
• Eleni Soumpourou
• Emma Wallington
• Patricia Gil Diez
• Peter Miller
• Lakshmi Harinarayan
• Maja Todorovic

Crop Science Centre Research support
• Kazuko Collins
• Christian Rogers
• Katie O’Neill
• Susana Sauret-Gueto

Renes Group
• Luuk Rutten