

Fertility Under Heat Stress

Natasha Yelina Crop Science Centre Research Fellow

> GFS Coffee Break Seminar February 4th, 2022

CROP SCIENCE CENTRE Driven by impact, fuelled by excellence

Aler.

-

-

- Ala

Symbiosis signalling Nod-LCOs

SYMRK,

NFR5

NFR1

Translation

Reactive

oxygen species

Zipfel and Oldroyd, 2017

Replacing inorganic fertilisers

Enhancing photosynthesis

Reducing losses from pests and pathogens

Replacing inorganic fertilisers

Enhancing photosynthesis

Reducing losses from pests and pathogens

Breeding Technologies

NIAB

My Background: Plants and Plant Viruses

Moscow State University

Barley stripe mosaic virus

Barley

Virus infection: Plant fights back, virus suppresses plant's response Just one virus protein Strong virus infection, strong plant response, plant recovers

My Background: Plant Reproduction

Department of Plant Sciences, Cambridge, UK

My Background: Plant Reproduction

My Background: Plant Reproduction

4 haploid gametes

Meiosis Is Complex...

Meiosis progression

... and Extremely Important For Crop Breeding

Schmutz et al. 2010 Du et al. 2012 Darrier et al., 2017 Kuo et al., 2021

... and Extremely Important For Crop Breeding

Alexander staining for pollen viability

Toluidine blue staining for aneuploidy

Yelina et al. unpublished

Examples: Fertility Affected by Temperature

Homo sapiens

Mus musculus

Acropora digitifera

Tribolium castaneum

Chickpea

Cowpea

Rice

Wheat

Tomato

Bos taurus

Poecilia reticulata

Sus species

Taeniopygia guttata

Grapholita molesta

Gallus gallus domesticus

Examples: Fertility Affected by Temperature

Prasad et al. 2016

Chickpea

Cowpea

Rice

Wheat

Barley

Tomato

Examples: Fertility Affected by Temperature

Crop species	Stress	Yield losses (%)	Reference
Maize (<i>Zea may</i> s L.)	Drought	63–87	Kamara et al., 2003
	Heat	42	Badu-Apraku et al., 1983
Wheat (<i>Triticum</i> aestivum L.)	Drought	57	Balla et al., 2011
	Heat	31	Balla et al., 2011
Rice (Oryza sativa L.)	Drought	53–92	Lafitte et al., 2007
	Heat	50	Li et al., 2010
Chickpea (<i>Cicer</i> <i>arietinum</i> L.)	Drought	45–69	Nayyar et al., 2006
Soybean (<i>Glycine</i> <i>max</i> L.)	Drought	46-71	Samarah et al., 2006
Sunflower (<i>Helianthus</i> <i>annuu</i> s L.)	Drought	60	Mazahery-Laghab et al., 2003

Fahad et al. 2017

Why Legumes?

Intercropping

N₂ fixing

Water efficiency

Genetic diversity Climate resilience

Dietary benefits

Questions:

Why is Fertility Affected By Temperature?

How Can We Reduce Crop Losses Due To Heat Stress During The Reproductive Stage?

Genome-Wide Association Mapping of Fertility Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in *Arabidopsis thaliana*

Johanna A. Bac-Molenaar,^{a,b} Emilie F. Fradin,^{a,b} Frank F.M. Becker,^b Juriaan A. Rienstra,^a J. van der Schoot,^a Dick Vreugdenhil,^a and Joost J.B. Keurentjes^{b,1}

Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance

Kumari Sita¹, Akanksha Sehgal¹, Bindumadhava HanumanthaRao²*, Ramakrishnan M. Nair², P. V. Vara Prasad³, Shiv Kumar⁴, Pooran M. Gaur⁵, Muhammad Farooq^{6,7,8}, Kadambot H. M. Siddique⁷, Rajeev K. Varshney^{5,7} and Harsh Nayyar^{1*}

> Theoretical and Applied Genetics (2020) 133:809–828 https://doi.org/10.1007/s00122-019-03508-9

ORIGINAL ARTICLE

Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses

SCIENTIA

Anju Rani¹, Poonam Devi¹, Uday Chand Jha², Kamal Dev Sharma³, Kadambot H. M. Siddique⁴ and Harsh Nayyar^{1*}

DOI: http://dx.doi.org/10.1590/1678-992X-2018-0233
ISSN 1678-992X
Research Article

Influence of high temperature on the reproductive biology of dry edible bean (Phaseolus

vulgaris L.)

Daiana Alves da Silva¹*^O, Cecília Alzira Ferreira Pinto-Maglio², Érica Cristina de Oliveira², Raquel Luiza de Moura dos Reis¹, Sérgio Augusto Morais Carbonell¹, Alisson Fernando Chiorato¹

Dmc1 is a candidate for temperature tolerance during wheat meiosis

$$\label{eq:constraint} \begin{split} & \mathsf{Tracie}\ \mathsf{Draeger}^{1} \textcircled{}^{1} \cdot \mathsf{Azahara}\ \mathsf{C}.\ \mathsf{Martin}^{1} \cdot \mathsf{Abdul}\ \mathsf{Kader}\ \mathsf{Alabdullah}^{1} \cdot \mathsf{Ali}\ \mathsf{Pendle}^{1} \cdot \mathsf{Maria-Dolores}\ \mathsf{Rey}^{2} \cdot \mathsf{Peter}\ \mathsf{Shaw}^{1} \cdot \mathsf{Graham}\ \mathsf{Moore}^{1} \end{split}$$

135 Mb genome Ideal for forward genetic mutagenesis screens

135 Mb genome Ideal for forward genetic mutagenesis screens

Bac-Molenaar et al. 2015

135 Mb genome Ideal for forward genetic mutagenesis screens

Bac-Molenaar et al. 2015

Look for mutants that retain fertility despite heat stress

135 Mb genome Ideal for forward genetic mutagenesis screens

> Fluorescent pollen markers developed by Prof Greg Copenhaver's lab

135 Mb genome Ideal for forward genetic mutagenesis screens

Yelina et al. 2012

Lloyd et al. 2018 Modliszewski et al. 2018 Yelina et al. 2012

Temperature, C

135 Mb genome Ideal for forward genetic mutagenesis screens

Identify mutants where crossovers are insensitive to temperature changes

Yelina et al. 2012

135 Mb genome Ideal for forward genetic mutagenesis screens

Identify mutants that do not have abnormalities in cell divisions and ploidy

Storme and Geelen 2020

What Can Be Done Exploiting Natural Variation

Understand molecular mechanisms of natural adaptation to heat stress during reproduction

Muñoz-Amatriaín et al. 2021

Overarching aim: Understand mechanisms Use this knowledge to engineer resilient crops Address food security

Summary

- Fertility is affected by temperature in many species
- Meiosis defects contribute to infertility due to temperature stress
- Reduced fertility due to temperature stress has direct relevance for agriculture
- Forward genetics and natural variation studies are powerful approaches to understand and engineer crop resilience