

Scotland's centre of expertise connecting climate change research and policy

The environmental impacts of food

Pete Smith

Professor of Soils & Global Change, FRS, FRSE, FNA, FRSB Institute of Biological & Environmental Sciences University of Aberdeen, Scotland, UK. E-mail: pete.smith@abdn.ac.uk

> Cambridge Global Food Security Symposium 2019: Generating Practical Solutions for India and Africa, April 8th 2019

The impact of food on climate change

Agricultural emissions are increasing, but *net* forestry CO₂ emissions have fallen recently

- AFOLU accounts for 24% of total anthropogenic GHG emissions
- AFOLU is the only sector where net emissions fell in the most recent decade
- Whilst agricultural non-CO₂ GHG emissions increased, *net* CO₂ emissions fell, mainly due to decreasing deforestation, and increased afforestation rates

Smith et al. (2014) – IPCC WGIII AR5

What is the potential of the mitigation options for reducing GHG emissions in the AFOLU Sector?

- Global economic mitigation potentials in agriculture in 2050 are estimated to be 0.5–10.6 GtCO₂eq/yr.
- Reducing food losses & waste: GHG emission savings of 0.6–6.0 GtCO₂eq/yr.
- Changes in diet: GHG emission savings of 0.7–7.3 GtCO₂eq/yr.
- Forestry mitigation options are estimated to contribute 0.2–13.8 GtCO₂/yr.

Smith et al. (2014) – IPCC WGIII AR5

Big differences in the GHG intensity of different foods

90

Demand- and supply-side measures need to be considered

- Supply-side measures in the AFOLU sector are large & cost-competitive
- Demand-side measures
 such as dietary change and waste reduction also have large, but uncertain, mitigation
- Demand-side measures
 may be difficult to
 implement, but are worthy
 of further research
 Other options in the
 AFOLU sector include
 bioenergy

Smith et al. (2014) – IPCC WGIII AR5

Changed consumption patterns

Table 3 Description of the reference scenario and the four dietary variants

La

Variant	Description	
Reference	Agricultural production for 2000–2030 (Bruinsma 2003) and 2030–2050 (FAO 2006). The 2000–2030 projections are country-scale and aggregated to the 24 world regions of the	Fewer animal
	IMAGE model. The projections for 2030–2050 have a continental scale	products in global diet
No Ruminant Meat (NoRM)	As reference, but with complete substitution of proteins from ruminant meat (cattle, buffaloes, sheep and goats) by	allows everyone to be
	plant-proteins, starting in 2010 and completed by 2030. By-products such as wool and leather are also assumed to be substituted by other materials	fed, and land is
No Meat (NoM)	As NoRM, with additional substitution of white meat (pork,	available for energy
	poultry) by plant proteins, starting in 2010 and completed by 2030	and nature
No Animal Products (NoAP)	As NoM, with additional substitution of milk and eggs by plant proteins, starting in 2010 and completed by 2030	conservation
Healthy Diet (HDiet)	"Healthy Eating" recommendations from the Harvard Medical School (Willett 2001) implemented globally for meat and eggs,	
	starting in 2010 and completed by 2030. See also Table 4	

THE APPEND AS AN A DECEMPTOR OF A DE		ore eq.
2. ACCEPTED TO THE SECOND FOR THE	2000	3.0
	2050-Reference	3.3
and based GHG emissions:	2050-NoRM	1.7
	2050-NoM	1.5
Land a start of the start of the start	2050-NoAP	1.1
	2050-HDiet	2.1

Stehfest et al. (2009)

GtC eq

Reducing GHG emissions – dietary change vs. technical mitigation

Food demand must be managed because sustainable intensification alone will not suffice

	Yie	lds	Demand side reduction measures:					
Comorian	Current trends in yields	Yield gap closures (sustainable	50% Food waste reduction	Healthy diets				
Scenarios CT1	X	intensification)						
CT2	Х		Х					
CT3	Х		Х	Х				
YG1		Х						
YG2		Х	Х					
YG3		Х	Х	Х				

Bajželj et al. (2014) Nature CC

Food demand must be managed because sustainable intensification alone will not suffice

	(ent yield rend			d gap re only	Yield gap closure demand options						
	units	2009*	CT1	CT2	СТЗ	YG1	YG2	YG3					
Cropland	Mkm ²	15.6	22.5 (+44%)	18.7(+20%)	17.6(+12%)	18.2(+16%)	16.0(+2%)	14.6 (-6%)					
Pasture	Mkm ²	32.8	35.2 (+7%)	32.6(-1%)	26.8(-18%)	36.0 <mark>(+10%)</mark>	33.1 (+1%)	27.1(-17%)					
Net Forest cover	Mkm ²	26.1	23.1 (-12%)	24.7(-6%)	26.1 (+0%)	24.2(-7%)	25.6(-2%)	27.1(+4%)					
Tropical Pristine Forests	Mkm ²	7.9	7.2(-9%)	7.4(-7%)	7.4(-6%)	7.4(-6%)	7.6(-4%)	7.6(-4%)					
Total GHG emissions	GtCO ₂ /y	13.5	22.2(+64%)	16.1(+20%)	11.7(-13%)	19.2(+42%)	15.0(+11%)	10.2 (-25%)					
Carbon sink potential	GtCO ₂ /y	14.7	14.5 <mark>(-1%)</mark>	14.6(-0%)	14.8(+0%)	14.6 <mark>(-1%)</mark>	14.7(+0%)	14.7(+ 0%)					
Fertiliser use	Mt/y	103	166(+ <mark>61%</mark>)	136(+32%)	125 (+22%)	226(+120%)	196(+90%)	175(+70%)					
Irrigation water use	km³/y	2889	6496 (+125%)	5328(+84%)	5075(+76%)	5051 (+75%)	4413(+53%)	4157(+44%)					

Bajželj et al. (2014) Nature CC

The impact of food on land, water and other indicators

Environmental impacts of broad groups of foods per kilocalorie

"For all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and nonrecirculating aquaculture have intermediate impacts; and ruminant meat has impacts ~100 times those of plant-based foods" Clark & Tilman (2017)

			IG Emis CO ₂ eq)	\	10 th		Land Us (m²year)	e	1(0th		Aci (g S	id. SO ₂ eq	1)		roph. ⁰O₄³-e		Scty (kL (/. W a əq)	iter
Α	100g protein	0	25	50 75	Рс	Mean	0 100	200	300 P	°c I	Mean	0	75	150	0	75	150	0	50	100
	Beef (beef herd) 7	24		• -	20	50			→ 4	2	164			-			-			
	Lamb & Mutton 7	57	× .		12	20		1.1	3	80	185									-
	Beef (dairy herd) 4	90			9.1	17			7	.3	22		1	-			-			
		0	5	10 15			0 5	10	15			0	75	150	0	75	150	0	50	100
Crus	taceans (farmed) 1.	Ok		→	5.4	18			0	.4	2.0			-			-			
	Cheese 1.	9k		• ->	5.1	11			→ 4	.4	41									-
	Pig Meat 1	16	1 A.		4.6	7.6			→ 4	.8	11			-						1
	Fish (farmed) 6	12			2.5	6.0			0	.4	3.7		I				\rightarrow			
	Poultry Meat 3	26			2.4	5.7			3	.8	7.1									
	Eggs 1	00			2.6	4.2			4	.0	5.7									
	Tofu 3	54			1.0	2.0	H.		1	.1	2.2	1			1					
	Groundnuts 1	• 00			0.6	1.2			1	.8	3.5				Ι.					
	Other Pulses 1	15 🔹		10 th pctl. ruminant	0.5	0.8			→ 4	.6	7.3									
	Peas 4			meat	0.3	0.4			1	.2	3.4	1								
	Nuts 1	99 🔹			-2.2	0.3			→ 2	.7	7.9									-
	Grains 2	3k			1.0	2.7		1	1	.7	4.6					1				
В	1 liter	0	2	4 6			0 3	6	9			0	15	30	0	10	20	0	50	100
	Milk 1.	8k			1.7	3.2			→ 1	.1	8.9			-						
	Soymilk 3	54	•		0.6	1.0	×.		0	.3	0.7	I.			۰.			ι.		
С	1000 kcal	0	1	2 3			0 2	4	6			0	5	10	0	5	10	0	20	40
	Cassava 2	88			0.4	1.4	1.1		0	.8	1.9				1					
	Rice (flooded) 7.	8k			0.4	1.2			0	.3	0.8			-			-			
	Oatmeal 1	39			0.3	0.9			1	.1	2.9									
	Potatoes 6	04	× .		0.2	0.6			0	.6	1.2									
Whe	at & Rye (Bread) 8.				0.3	0.6			0	.4	1.4									
	Maize (Meal) 6.	2k =	1		0.2	0.4			0	.3	0.7									
D	1 liter	0	5	10 15			0 10	20	30			0	30	60	0	30	60	0	100	200
	Palm Oil 2	20	•		3.6	7.3	8		1	.7	2.4					1				
	Soybean Oil 4	97			2.4	6.3			5	.3	11									
	Olive Oil 4	11	•		2.9	5.4			• → 7	.9	26									-
	Rapeseed Oil 1.	8k				3.8				.2	11									
	Sunflower Oil 5	19			2.5	3.6			8	.4	18						-			
								an Mea	n				17							
				10 th	perc	centile				6	90 th P	erce	ntile							

Estimated global variation in GHG emissions, land use, terrestrial acidification, eutrophication, and scarcity-weighted freshwater withdrawals, within and between **40 major foods.** (A) Protein-rich products. Grains are also shown here given that they contribute 41% of global protein intake, despite lower protein content. (B) Milks. (C) Starch-rich products. (D) Oils.

Poore & Nemececk (2018)

		GHG E I (kg CO ₂	mission : eq)	S 10 th		Land Use (m²year)	10 th	Acid. (g SO ₂ eq)	Eutroph. (g PO ₄ 3-eq)	Scty. Water (kL eq)
E	1kg Tomatoes 855 Brassicas 40 Onions & Leeks 37		2	3 0.4 0.2 0.3	0.5 0.5	0 0.5 1	1.5 0.1 0.4 0.2 0.4 0.1 0.4	B 1		0 0 10 20
F	Root Vegetables 43 1 kg Berries 183 Bananas 246 Apples 125 Citrus 377	0 1	2	0.2 3 0.8 0.6 0.3 0.1	1.5 0.9 0.4	0 2 4	0.2 0.3 6 → 0.3 2. 0.3 1.1 0.3 0.1 0.4 0.1	0 10 4		
G	1 kg Cane Sugar 116 Beet Sugar 209		4	6 0.9 1.2	3.2 1.8	0 1 2 3	4 1.2 2.1 1.2 1.2		40 0 20 4	10 0 20 40
H	1 unit Beer (5% ABV) 695 Vine (12.5% ABV) 154			0.6 0.14 0.07	0.24		0.6 0.05 0.2 0.07 0.1	2	2 0 0.5	10 0.1 0.2
	1 serving k Chocolate (50g) 162 offee (15g, 1 cup) 346		6	9 -0.01 0.08		0 3 6	9 1.7 3. 0.13 0.3	4	10 0 10 2	20 0 0.1 0.2
			10 th p	ercenti	e	Median I	Mean	90 th perc	centile	

Estimated global variation in GHG emissions, land use, terrestrial acidification, eutrophication, and scarcity-weighted freshwater withdrawals, within and between **40 major foods.** (E) Vegetables. (F) Fruits. (G) Sugars. (H) Alcoholic beverages (1 unit = 10 ml)of alcohol; ABV, alcohol by volume). (I) Stimulants. n = farmor regional inventories. Pc and pctl., percentile; scty., scarcity.

Poore & Nemececk (2018)

Present (2010) and projected (2050) environmental pressures on five environmental domains divided by food group

Impacts of reductions in food loss and waste, technological change, and dietary changes on global environmental pressures in 2050

Springmann et al. (2018)

Reduction in environmental impacts when measures are combined

Springmann et al. (2018)

Planetary option space

)iet cenario	Tech scenario	Loss and waste	e	GHG mission	IS	C	Cropland use			Bluewater use			Nitroge pplicati		Phosphorus application			
		scenario	SSP2	SSP1	SSP3	SSP2	SSP1	SSP3	SSP2	SSP1	SSP3	SSP2	SSP1	SSP3	SSP2	SSP1	SSP3	
Baseline	Baseline	Baseline	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
		Waste/2	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
		Waste/4	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
	Tech	Baseline	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
		Waste/2	4	4	4	3	3	3	2	2	2	4	4	4	4	4	4	
		Waste/4	4	4	4	2	2	2	2	2	2	4	4	4	4	4	4	
	Tech+	Baseline	4	4	4	3	3	3	3	3	3	3	3	3	2	2	2	
		Waste/2	4	4	4	2	2	2	2	2	2	3	3	3	2	2	2	
		Waste/4	4	4	4	1	1	1	2	2	2	3	3	3	2	2	2	
Guidelines	Baseline	Baseline	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
		Waste/2	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
		Waste/4	4	4	4	4	3	4	3	3	3	3	3	3	4	4	4	
	Tech	Baseline	4	4	4	3	3	3	3	2	3	4	4	4	4	4	4	
		Waste/2	4	4	4	2	2	2	2	2	2	4	3	4	4	4	4	
		Waste/4	4	4	4	2	1	2	2	2	2	3	3	3	4	3	4	
	Tech+	Baseline	4	4	4	2	2	2	3	2	3	3	3	3	2	2	2	
		Waste/2	4	4	4	1	1	1	2	2	2	3	3	3	2	2	2	
		Waste/4	4	3	4	1	1	1	2	2	2	3	3	3	2	2	2	
Flexitarian	Baseline	Baseline	3	2	3	4	4	4	3	3	3	4	4	4	4	4	4	
		Waste/2	1	1	2	4	4	4	3	3	3	3	3	3	4	4	4	
		Waste/4	1	1	1	4	3	4	3	2	3	3	3	3	3	3	3	
	Tech	Baseline	2	1	2	3	3	3	2	2	3	4	4	4	4	4	4	
		Waste/2	1	1	1	2	2	2	2	2	2	3	3	3	4	4	4	
		Waste/4	1	1	1	1	1	2	2	2	2	3	3	3	3	2	3	
	Tech+	Baseline	1	1	2	2	2	2	2	2	3	3	3	3	2	2	2	
		Waste/2	1	1	1	1	1	1	2	2	2	3	2	3	2	2	2	
		Waste/4	1	1	1	1	1	1	2	2	2	2	2	2	2	1	2	

Effect of diets on GHG emissions and cropland. a, Per capita food production GHG emissions for five diets b, c, Forecasted 2009 to 2050 changes (2009 value set to 0) in global food emissions (b), and cropland for each diet (Methods; alternative scenarios, such as lines 1-4, have fairly parallel trends) (c). d, 2050 global cropland reductions from alternative diets relative to income-dependent diet.

Tilman & Clark (2014)

Reducing animal product consumption creates the headspace for less intensive forms of agriculture. The highest levels of organic share can only be achieved by reduction in animal product consumption and elimination of animal feeds that could be fed to humans

Muller et al. (2017)

Other benefits of dietary change

Other papers arriving at similar conclusions.....

ARTICLE

doi:10.1038/nature13959

Global diets link environmental sustainability and human health

David Tilman^{1,2} & Michael Clark¹

Diets link environmental and human health. Rising incomes and urbanization are driving a global dietary transition in which traditional diets are replaced by diets higher in refined sugars, refined fats, oils and meats. By 2050 these dietary trends, if unchecked, would be a major contributor to an estimated 80 per cent increase in global agricultural greenhouse gas emissions from food production and to global land clearing. Moreover, these dietary shifts are greatly increasing the incidence of type II diabetes, coronary heart disease and other chronic non-communicable diseases that lower global life expectancies. Alternative diets that offer substantial health benefits could, if widely adopted, reduce global agricultural greenhouse gas emissions, reduce land clearing and resultant species extinctions, and help prevent such diet-related chronic non-communicable diseases. The implementation of dietary solutions to the tightly linked diet-environment-health trilemma is a global challenge, and opportunity, of great environmental and public health importance.

Tilman & Clark Nature (2014)

Cancer risk increases with higher consumptions of red and processed meats...

Carcinogenicity of consumption of red and processed meat

In October, 2015, 22 scientists from ten countries met at the International Agency for Research on Cancer (IARC) in Lyon, France, to evaluate the carcinogenicity of the consumption of red meat and processed meat. These assessments will be published in volume 114 of the IARC Monographs.¹

Red meat refers to unprocessed mammalian muscle meat—for example, beef, veal, pork, lamb, mutton, horse, or goat meat—including minced or frozen meat; it is usually consumed cooked. Processed meat refers to meat that has been transformed through salting, more than 200 g per person per day.⁴ Less information is available on the consumption of processed meat.

The Working Group assessed more than 800 epidemiological studies that investigated the association of cancer with consumption of red meat or processed meat in many countries, from several continents, with diverse ethnicities and diets. For the evaluation, the greatest weight was given to prospective cohort studies done in the general population. High quality population-based case-control studies provided additional evidence. For both day of red meat and an 18% increase (95% Cl 1.10–1.28) per 50 g per day of processed meat.¹²

Data were also available for more than 15 other types of cancer. Positive associations were seen in cohort studies and population-based casecontrol studies between consumption of red meat and cancers of the pancreas and the prostate (mainly advanced prostate cancer), and between consumption of processed meat and cancer of the stomach.

On the basis of the large amount of data and the consistent associations

Lancet Oncol 2015 Published Online October 26, 2015 http://dx.doi.org/10.1016/ S1470-2045(15)00444-1

For more on the IARC Monographs see http:// monographs.iarc.fr/

18% increase in risk of colorectal cancer = increase of 1/100 people

Food, health, climate change...

Analysis and valuation of the health and climate change cobenefits of dietary change

Marco Springmann^{a,b,1}, H. Charles J. Godfray^{a,c}, Mike Rayner^{a,b}, and Peter Scarborough^{a,b}

^aOxford Martin Programme on the Future of Food, Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; ^bBritish Heart Foundation Centre on Population Approaches for Non-Communicable Disease Prevention, Nuffield Department of Population Health, University of Oxford, Headington, Oxford OX3 7LF, United Kingdom; and ^cDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom

Edited by David Tilman, University of Minnesota, St. Paul, MN, and approved February 9, 2016 (received for review November 22, 2015)

What we eat greatly influences our personal health and the environment we all share. Recent analyses have highlighted the likely dual health and environmental benefits of reducing the fraction of animalsourced foods in our diets. Here, we couple for the first time, to our knowledge, a region-specific global health model based on dietary and weight-related risk factors with emissions accounting and economic valuation modules to quantify the linked health and environmental consequences of dietary changes. We find that the impacts of dietary changes toward less meat and more plant-based diets vary greatly

S A Z C

The diets investigated in these studies include diets with a pro rata reduction in animal products (ruminant meat, total meat, dairy) (11, 13, 14), specific dietary patterns that include reduced or no meat (such as Mediterranean, "pescatarian," and vegetarian diets) (11, 12), and diets based on recommendations about healthy eating (7, 11). The health consequences of adopting these diets have not been explicitly modeled or quantitatively analyzed, but instead inferences have been drawn from information available in the epidemiological literature (16). In the most comprehensive study to date. Tilman and Clark (12) analyzed the GHG emissions

How to incentivise dietary change

Taxes on food by GHG emissions?

Fig. 9 Taxes per kg (fresh weight) food product for GHG weighted consumption taxes on animal food equivalent to \notin 60 per ton CO₂-eq. *Percentages on top of bars* show the corresponding relative increase in consumer price

Wirsenius et al. (2011)

Avoided deaths in thousands (**a**,**c**) and per million people (**b**,**d**) in a scenario that covers all food commodities. Risk factors (**a**,**c**) include increases in red meat consumption (MTC), decreases in fruit and vegetable consumption (FVC), increases in the prevalence of underweight (UND) and overweight (OVW) people, and increases in obesity (OBS) Springmann *et al.*, (2017)

Graphical representation of the mitigation framework

Poore & Nemececk (2018)

Conclusions (I)

- There are up to 2 orders of magnitude (100x) difference in the environmental impact of different foods
- The differences in environmental impact holds for a range of environmental indicators including:

Smith (2014a)

- greenhouse gas emissions,
- -land requirement,
- water footprint,
- atmospheric acidification, and
- eutrophication of water

Conclusions (II)

- Demand-side measures such as *dietary change* and *food waste reduction* are effective measures to reduce the environmental footprint of food
- Policy to incentivise change will be challenging, but might include taxes – though social justice and equity issues need to be considered
- There are a range of health co-benefits associated with dietary change
- Dietary change provides a multiple-win solution for climate change, food security, human health and environmental sustainability

Smith (2014)

Thank you for your attention

