

Evaluating the impact of digital technologies on future food supply chains

Implications for developed and developing markets

8th April 2019

Dr Jagjit Singh Srai jss46@cam.ac.uk

Centre for International Manufacturing Institute for Manufacturing, Department of Engineering University of Cambridge

Evaluating the impact of digital technologies on future food supply chains

Developed markets: Rapid growth of e-Commerce

- Consumer benefits of convenience and speed but is this unchecked consumerism environmentally sustainable?
- Do digital platforms provide new opportunities to connect consumers with their local retailers and farmers offering personalisation, a more informed shopping basket and less waste?

Developing markets: Sustainable economic development

- Building attractive markets for farmers without compromising available resources
- Technology solutions e.g. through precision agriculture

Understanding international flows to ensure authenticity and quality

• Complexity of international trade is challenging traceability and provenance

E-Commerce: consumer benefits of convenience and speed

- 2 hour delivery from order placement as is being offered by the pioneers of e-commerce such as Amazon Fresh grocery, Deliveroo and Ocado
 - <u>https://www.youtube.com/watch?v=iogFXDWqDak</u>

Last Mile Configurations

c.a. 1860 Last Mile Configuration

Source: commons.wikimedia.org/wiki/File:Pony_ExpressAdvert.jpg

21C e-Commerce Last Mile Configurations

Can this be a sustainable supply model?

Traditional retailers have had to follow suit and develop their own 'omnichannel' on-line offerings that sit alongside their store

e.g. From a Cost-to-Serve and resource perspective

e.g. Increasing market penetration scenarios

Home delivery OR in-store shop, Click & Collect, Local pick-up points?

Analysing consumer purchase habits

🖤 CAMBRIDGE

Department of Engineering

Consumer shopping baskets increasingly delivered direct to doorsteps

(In 2015 e-commerce: 14% of retail and wholesale turnover in UK (c. 21% in the US).

Store_type Product ID

Extra/Supe

PROS_001

PROS 002

PROS 004

PROS_006

PROS_002

PROS_003

PROS_004

100K

Units sold

2008

97,557 1,027,110

Units sold 0 10,000 20,000

0 30,000

37,890

322

53

Do these digital platforms provide new opportunities?

- To connect consumers with their local retailers and farmers offering personalisation
- A more informed shopping basket
- Less waste?

EIT Food Programme

- A £340 million EU Innovation programme to change the way we eat, grow and distribute food;
- A consortium of 55+ partners from leading businesses, research centres and universities across 13 European countries;
- A vision to put Europe at the centre of a global revolution in food innovation and production, and its value in society.

Programme pillars

- Overcome low consumer trust
- Create consumer-valued food for healthier nutrition
- Build a consumer-centric connected food system
- Enhance sustainability through recourse stewardship
- Educate to engage, innovate and advance
- Catalyse food entrepreneurship
- Accelerate and customize innovation

Using predictive analytics and 'nudge' techniques in eCommerce

- Personalisation
- Using predictive analytics to anticipate consumption & reduce waste through inventory management strategies
- Exploring the use of 'nudge' techniques
- Consolidation centres combining deliveries
- Building shared platforms and leveraging adjacency
- Ability to process and analyse data has become a critical ownership advantage

http://pxhere.com/en/photo/1583503 [CC0]

Project GLAD - Green Last Mile Delivery: a more sustainable way for food home delivery tailored to consumer needs

<u>https://www.eitfood.eu/programmes/glad-green-last-mile-delivery-a-more-sustainable-way-for-food-home-delivery-tailored-to-consumer-needs</u>

Engaging the Consumer – personalisation

Sugar filters and more

Setup profile						
< back A	llergy Profile					
8 Beth	Egg White	•				
Celery and Ce	Egg Yolk	-				
Cinnamon & E	May Contain Egg					
Egg		2 > 1				
Fish		3 >				
Food Additives		> .				

Ready-made lists

http://www.foodmaestro.me/

Ingredients & nutritional info

Centre for International Manufacturing

Developing markets

Sustainable economic development

- GCRF-funded £7.8 million programme;
- A collaboration of 19+ partner institutions across India, Pakistan and the UK;
- TIGR²ESS aims to improve livelihoods and farming in India:
 - Empower, educate and improve nutrition for farmers
 - Identifying crop types and practices for contrasting climatic regions

Transforming India's Green Revolution by Research and Empowerment for Sustainable food Supplies

ernational Manufacturing

Structure: Flagship Projects and leads							
	FP2: Improving Water Use and Yield Stability in Millet and Sorghum; Enhancing Photosynthesis	FP3: Heat and Drought Resilience in Wheat	FP4: Water Use and Management in a Changing Monsoon Climate	FP5: Supply Chains: Modelling Water Use for Sustainable Livelihoods	FP6: Impacting Wellbeing in Rural and Urban Communities		
UoC: Geography	ICRISAT	NIAB	UoC: Archaeology	UoC: IfM	UEA/UoC/NNEdPRO		

Includes a 2-way knowledge exchange partnership by growing research capacity to address food security Issues

FP5 Deliverables

Objectives

- Analyse, design and operate more resilient (resource efficient) food supply network models;
- enabled by new crop, production process and digital technologies

Outputs

- Food supply network design, water-resource assessment, resource/water stewardship,
- suggest interventions for future regional (State) products and their e-Commerce supply chains

Multi-echelon Supply Network modelling

Deliverables are linked to the analysis and design of alternative food supply network models enabled by new crops, production processes and digital technologies to support more resilient, resource efficient food systems

FP5 Supply Chains: Modelling Water Use for Sustainable Livelihoods

- Inform the sustainable use of water, and build resilience in supply chains for food producers and consumers alike.
- Future regional (State) interventions to influence institutional/industrial/user behaviours and transform livelihoods

Punjab – 2/3 of districts in water distress!

Local groundwater availability and use (ref. year: 2013)

Raw data source: Central Ground Water Board, Government of India (2017) Dynamic ground Water resources of India as on 31st March 2013. Faridabad

- 19% of India's wheat; 10% of rice
- Ranks 7th as gross producer of wheat in the world
- However Punjabi Agriculture is facing a crisis
 - <u>Unprofitable</u>: declining contribution to the State's VA (15.4% in 2017-18)
 - <u>Issue of small and marginal farmers debt</u> linked to worrying suicide rates: introduction of Crop Loan Waiver Schemes
 - Excessive dependence on rice and wheat, and overexploitation of resources: rapidly depleting water table <u>calls for micro-irrigation solution</u>
 - <u>Over-use of fertilizers and pesticides</u> contributing to cancer and kidney failure.
 - <u>Paddy straw burning</u> widespread practice is causing major air pollution

High-value Crops in India: The case of Kinnow

- Fruit & vegetables regarded as viable diversification options for 'paddy-wheat' rich Punjab
- Case Example (PAU*): kinnow
 - high productivity in Punjab see chart
 - target: exporting 20,000 tonnes

- However, potentially high water requirement:
 - **539 1,276 liters** p.a. for a 6-year old Kinnow tree
 - 2,000+ trees/orchard: ~ 225-247 trees/ha;
- <u>Need for precision irrigation</u> to ensure increased yields and fruit quality.

Precision agriculture 'digital twin': simulation model (cyber-space)

• Use of sensors and AGV to evaluate each plant's specific water requirement

Example of single simulation run

Example of multiple simulation runs: distance/water use plot

Precision agriculture 'digital twin': physical model (application)

- Industry 4.0 Technologies in Agriculture: from computer simulation to physical system application!
- Mock-up: recreate environment (e.g. orchard) & construct/program intelligent vehicles for testing
- Colour recognition (e.g. tree needing water) + real-time collision detection (vehicle 'knows' when to turn)

Blue canopy: no water needed

Red canopy: water needed (audio/visual clues to signal action needs to be taken)

Real-time recording and display of sensory data

Reducing Waste in Food Supply Chains

World Food Wastage. Image credit: Infographics by FAO

CIM Analysis on OECD data

International trade – food product (supply chain adjusted)

Example focuses on Imports into the EU in 2016

- physical quantities of specific products imported for domestic consumption or processing shipped into a country.
- Includes re-imports

Network analysis of these data can help identify where most products of interest originate

Emerging applications of inter-industry trade models:

- Estimate natural resource use (e.g. water) through global trade (e.g. www.materialsflow.net)
- Evaluate the composition of foreign VA (e.g. 2018 World Investment Report, Ch I, section C.2)

Elaboration based on raw data from: www.fao.org/faostat/en/#data/TM

© Centre for International Manufacturing, Institute for Manufacturing, 2019

International trade – food product (supply chain adjusted)

International trade – food product (supply chain adjusted)

e.g. BUT possible indirect trade pathways

20

Elaboration based on raw data from: www.fao.org/faostat/en/#data/TM

MBRID Department of Engineering

© Centre for International Manufacturing, Institute for Manufacturing, 2019

Centre for International Manufacturing

Concluding summary:

Evaluating the impact of digital technologies on future food supply chains

Developed markets: Rapid growth of e-Commerce

- Consumer benefits of convenience and speed but is this unchecked consumerism environmentally sustainable? *Integrate a sustainable dimension!*
- Do digital platforms provide new opportunities to connect consumers with their local retailers and farmers offering personalisation, a more informed shopping basket and less waste? *Are Digital platforms with consumer involvement and appropriate governance an answer?*

Developing markets: Sustainable economic development

- Building attractive markets for farmers without compromising available resources; **Informed crop**–**land allocation**
- Technology solutions e.g. through precision agriculture *Is more technology the solution?*

Understanding international flows to ensure authenticity and quality

• Complexity of international trade is challenging traceability and provenance **Can we use digital technologies to avoid fraudulent activity?**

Acknowledgements

Dr Ettore Settanni Dr Naoum Tsolakis

and Questions

