Transgenic Approach to Avian Influenza Control in Chickens

Dr Jon Lyall Department of Vet Medicine University Of Cambridge

Chickens on a Global Scale

Global environmental changes and population growth reinforce the need to:

produce more waste less protect the supply mitigate the environmental impact

50 billion chickens

12 billion backyard/small scale38 billion intensively reared12 billion eggs produced in UK (2015)Set to double by 2030

Global food production

Carbon footprint of Livestock per Kg proteinPoultry3.7 KgPork24 KgBeef58-1000 Kg

Why is Avian Influenza a problem?

Production losses

Public health risk

Food security

Economic impact Cost of control measures Collateral consequences for GDP

Impact of Avian Influenza

- Economic losses from poultry disease around 10-20%
- In 2004 H5N1 caused losses of 400 million chickens worldwide including 44 million birds (17.5% of population) in Viet Nam, 29 million birds (14.5%) in Thailand
- Poultry sector contributed 1.3% of GDP in China in 2004, 20-50% rural family incomes in Nigeria
- Pandemic threat from infected chickens (and pigs) to humans

Impact of pandemic flu

Public health risk

- Avian influenza is the ultimate source of all new strains of influenza.
 - Endemic in wild birds. Low risk of direct infection to humans. However...
- Chickens (and pigs) are a large susceptible population with close contact to humans and wild birds
 - Have the potential to amplify human exposure
 - Facilitate virus evolution
 - Act as a bridge for cross-species transmission.

Control Measures For Avian Influenza

- Improve farming and market practices
 - Control mixed livestock production and wet markets
- Vaccination
 - Multiple subtypes/antigenic drift
 - Sub-clinical disease
 - Drives evolution of HA
- Biosecurity
 - Incompatible with free-range production
- Influenza resistance
 - Genetic Modification

Genetic Modification

- Precise
 - Introduce only the gene of interest
- Versatile
 - Introduce unique combinations
 - Natural and artificial genes
- Maintain genetic diversity
 - Introduce same trait into multiple founder lines
 - No loss of valuable traits

Production of genetically-modified chickens using lentivectors

Our Inhibitors

- Pan subtype influenza virus decoy RNA
 - Non coding RNA
 - Binds viral polymerase
 - Replicated by viral polymerase
- Influenza virus driven expression of chicken interferon alpha
 - Antiviral gene expression directly driven by virus
 - Product is identical to endogenous chicken IFNa

Influenza Virus Decoy

H5N1 Challenge of Decoy GM Chickens

Chickens challenged with 10⁴ EID50 dose of Highly Pathogenic H5N1 Influenza Uninfected chickens co-housed with infected chickens on day 0 post infection Day of death / euthanasia recorded Day healthy birds killed for tissue sampling recorded Experiment ended on day 10 post infection

Decoy prevents onward viral transmission from transgenic birds

Flu driven inhibitors Use flu virus to directly express inhibitory gene.

Green Fluorescent Protein

Chicken Interferon-alpha

Figure 2. Induction of GFP expression by A/WSN/33 infection of 293T cells cotransfected with 500ng GFP mini-replicon vector and 50ng DS-Red control plasmid.

Viral yield from interferon chicken cell lines

In vivo challenge of interferon GM chickens

Virus driven interferon expression increases survival in infected birds and decreases onward transmission

Prospects

- Individually, these inhibitors reduce susceptibility to the virus, and subsequent transmission, and so would be expected to prevent virus spreading through a flock of birds
- Combinations of inhibitors within the same bird can be achieved by cross breeding with the potential to provide complete resistance to the virus
- These inhibitors are active against all subtypes of influenza virus
- The technology works, but are people ready to accept GM animals?

Acknowledgements

- Laurence Tiley (Cambridge)
- Helen Sang (Roslin Institute)
- Ian Brown (VLA)
- BBSRC