Resource competition: Supporting a growing population whilst reducing greenhouse gas emissions.

Astley Hastings

www.abdn.ac.uk/environment-food-security/

Outline

- Population
- Energy
- Emissions
- Resources limits
- Food
- Way forward

Population interaction with the environment

Reindeer population St Pauls Island Aleutian Islands

Klein 1968

Why are humans so successful

- Collaboration
- Competition
- Dexterity
- Inquisitiveness

- Agriculture
- Engineering
- Science
- Energy use

Wikipedia

Population projection

WORLD: Total Population

Source: United Nations (2014). *Probabilistic Population Projections based on the World Population Prospects: The 2012 Revision*. Population Division, DESA. ST/ESA/SER.A/353. http://esa.un.org/unpd/ppp/

Outline

- People
- Energy
- Emissions
- Resources limits
- Food
- Way forward

Energy demand continues to rise

Energy demand by region

As China slows, then India, Southeast Asia, the Middle East and parts of Africa & Latin America take over as the engines of global energy demand growth.

Projected crude oil demand

Oil demand satisfied by tight oil

Coal use limited by GHG emissions

Global coal demand by key region

Global coal demand growth slows rapidly due to more stringent environmental policies, underlining the importance of high-efficiency plant & CCS to coal's future

IEA 2014

Gas demand increase satisfied by LNG and shale gas

Energy Outlook 2030

The energy mix changes slightly

Growth in total primary energy demand

Today's share of fossil fuels in the global mix, at 82%, is the same as it was 25 years ago; the strong rise of renewables only reduces this to around 75% in 2035

Outline

- People
- Energy
- Emissions
- Resources limits
- Food
- Way forward

Climate change and model predictions

Emissions driving the models

GHG emissions growth has continued to increase despite policies.

Total Annual Anthropogenic GHG Emissions by Groups of Gases 1970-2010

About half of cumulative anthropogenic CO₂ emissions between 1750 and 2010 have occurred in the last 40 years.

World changes in emissions 1990-2004 by source and GHG

IPCC GHG emissions 1990-2004 by source

UK Greenhouse gas production & consumption

Outline

- People
- Energy
- Emissions
- Resources limits
- Food
- Way forward

From a climate perspective, we should not chase unconventional fossil fuels - and we need to wean ourselves off conventional fossil fuels

Capital Investment

World Energy Outlook 2014

Average annual low-carbon investment, 2014-2040

The entire global CO₂ budget to 2100 is used up by 2040 – Paris must send a strong signal for increasing low-carbon investment four times beyond current levels

Sustainability metrics for a low carbon future

- Perpetual
- High energy efficiency
- Low GHG emissions per unit of energy
- High net energy per hectare

Land use is a limiting factor

Shale gas wells in Wyoming

av.

5.2.2

(HE)

1010

100

Mar

CON S

Land Use from oil/shale gas development 7ha pads

Wytch Farm oil field requires only 4 pads

Small and well Camouflaged facilities

Integery 02015 Digital State, Germappingpic, Informality & Etuesky, Landsel -

Mojave desert California solar thermal

Hampshire solar PV

Wind farms in "pristine" landscapes

Dual land use wind and crop farms

Extreme wind development

Sugar cane plantations on Maui Hawaii

Rudolff et al 2014

Balancing Land Use between: eco-system services – food and energy

Carbon emissions Mg C ha-1 y-1 From natural vegetation to bioenergy crops Including soil carbon and vegetation For the first 20 years

White area crop does not grow Light grey =2 Black >42

Flynn et al. 2011

Bioenergy

Solar

Wind

Potential GJ/ha/y

Energy Potential Limited by <\$16/GJ (\$100/bbl) <20kg C/GJ in GJ/ha/y

Pogson et al 2012

Lowest C emissions

Lowest cost

Highest power per ha After restrictions

Protected Areas - Convention on Biological Diversity

Red gradient Is energy density

Green areas Are Current Protected areas

Blue areas Are Aichi target 11 of CBD 17%

> Yellow pie is Aichi 30%

Outline

- People
- Energy
- Emissions
- Resources limits
- Food
- Way forward

Crop yields are not the Issue

Global Yield Trends, 1966-2004

Improved by:

- Fertilizer and chemical use
- Improved agronomy \Rightarrow precision farming
- Plant breeding
 - Extend the growing season
 - Partitioning C to edible parts
 - Drought, heat, frost and pest resistance

Food production and supply challenges

- Distribution and storage infrastructure
- Energy for tillage, fertilizers and chemicals
- Suitable land availability
- 5-15 litres of water per g of biomass
- 2-4.6 g of C photosynthesis per MJ sunlight
- Growing season change & pest migration
- Diet

GHG emissions of diets

$1.4 - 4.4 \text{ kg CO}_2 \text{ per day}$ $3.7 - 6.1 \text{ kg CO}_2 \text{ per day}$

There are high contrasts between low consumption and high consumption dietary patterns around the world.

Reducing GHG emissions – dietary change vs. technical mitigation

UK food GHG emissions & mitigation

- Agriculture
- Fertilizer manufacture
- Food manufacturing
- Packaging
- Transport
- Home food related
- Retail
- Catering
- Waste disposal

- Red meat
 Dairy products
 Cereals/bread
 Fruit & vegetables
 Chicken/fish/eggs
 Other
 Beverages
- Develuges
- Oils/sweets/condiments

- Reduce red meat and dairy in diet
- Reduce processed foods
- Reduce non seasonal foods
- Reduce calorific intake

Outline

- People
- Energy
- Emissions
- Resources limits
- Food
- Way forward

We're on course for a 4 degree world

Speech to the United Nations, 8th November, 1989

Margaret Thatcher

"Every ONE will be affected and no one can opt out. Those Who consume more must give up more to help those who consume less."

One Planet